Takeuti's conjecture
Takeuti's conjecture is the conjecture of Gaisi Takeuti that a sequent formalisation of second-order logic has cut-elimination (Takeuti 1953). It was settled positively:
- By Tait, using a semantic technique for proving cut-elimination, based on work by Schütte (Tait 1966);
- Independently by Takahashi by a similar technique (Takahashi 1967);
- It is a corollary of Jean-Yves Girard's syntactic proof of strong normalization for System F.
Takeuti's conjecture is equivalent1 to the consistency of second-order arithmetic and to the strong normalization of the Girard/Reynold's System F.
Notes
^1 Equivalent in the sense that each of the statements can be derived from each other in the weak system PRA of arithmetic; consistency refers here to the truth of the Gödel sentence for second-order arithmetic. See consistency proof for more discussion.
References
- William W. Tait, 1966. A nonconstructive proof of Gentzen's Hauptsatz for second order predicate logic. In Bulletin of the American Mathematical Society, 72:980–983.
- Gaisi Takeuti, 1953. On a generalized logic calculus. In Japanese Journal of Mathematics, 23:39–96. An errata to this article was published in the same journal, 24:149–156, 1954.
- Moto-o Takahashi, 1967. A proof of cut-elimination in simple type theory. In Japanese Mathematical Society, 10:44–45.
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›